
Context
BlobSeer

Applications

BlobSeer: Towards efficient data storage
management on large-scale, distributed systems

Bogdan Nicolae

University of Rennes 1, France
KerData Team, INRIA Rennes Bretagne-Atlantique

PhD Advisors: Gabriel Antoniu and Luc Bougé

December 1, 2010

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 1/ 45



Context
BlobSeer

Applications

Outline

Context

Related work and its limitations

Contribution: BlobSeer

Principles
High level description
Zoom on metadata management
Synthetic benchmarks

Applications

BlobSeer as a storage backend for Hadoop MapReduce
BlobSeer providing virtual machine image storage for clouds
BlobSeer as a QoS enabled storage service for applications
running on the cloud

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 2/ 45



Context
BlobSeer

Applications

Information overload
Large-scale computing infrastructure
Data storage at large scale

We live in exponential times...

Every two years the amount
of information doubles

Making something useful out
of it becomes incresingly
difficult

We depend more and more
on large-scale computing
infrastructure

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 3/ 45



Context
BlobSeer

Applications

Information overload
Large-scale computing infrastructure
Data storage at large scale

Dealing with information overload: Enterprise datacenters

Tens of thousands of machines in huge clusters

Leveraged directly by the owner

Commodity hardware: minimizes per unit cost

Easy to add, upgrade and replace

Data-intensive applications

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 4/ 45



Context
BlobSeer

Applications

Information overload
Large-scale computing infrastructure
Data storage at large scale

Dealing with information overload: Clouds

Computing as utility rather than capital investment

Driven by pay-as-you-go model

Several levels of abstraction: IaaS, PaaS, SaaS

Several advantages: low entry cost, elasticity, rapid
development

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 5/ 45



Context
BlobSeer

Applications

Information overload
Large-scale computing infrastructure
Data storage at large scale

Dealing with the information overload: HPC infrastructures

Complex scientific and engineering applications

High-end hardware

Manipulate information at petabyte-scale and beyond

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 6/ 45



Context
BlobSeer

Applications

Information overload
Large-scale computing infrastructure
Data storage at large scale

Data storage and management is a key issue

Requirements

Easy manipulation of data

High access throughput

Scalability

Data
Metadata

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 7/ 45



Context
BlobSeer

Applications

Information overload
Large-scale computing infrastructure
Data storage at large scale

Current approaches: Parallel file systems

Mostly used in HPC infrastructures

POSIX access interface

Data striping

Advanced caching

Pros

Distributed data

MPI optimizations

Cons

Locking-based

Too many small files

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 8/ 45



Context
BlobSeer

Applications

Information overload
Large-scale computing infrastructure
Data storage at large scale

Current approaches: Data-intensive oriented file systems

Huge files

Writes at random offsets are seldom

Files grow by atomic appends

Fine grain concurrent reads

Pros

No locking

Data location aware

Cons

Centralized metadata

Expensive updates

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 9/ 45



Context
BlobSeer

Applications

Information overload
Large-scale computing infrastructure
Data storage at large scale

Current approaches: Cloud data storage services

Virtualize storage resources

Pay for duration, size and traffic

Flat naming scheme

Simple access model

Pros

High data availability

Versioning

Cons

Limited object size

Limited concurrency
control

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 10/ 45



Context
BlobSeer

Applications

Information overload
Large-scale computing infrastructure
Data storage at large scale

Limitations of existing approaches

Issue Parallel FS Data-intensive FS Cloud store

Too many
small files

× Addressed ×

Centralized
metadata

Addressed × Addressed

No versioning
support

× × Addressed

No fine grain
writes

Addressed × ×

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 11/ 45



Context
BlobSeer

Applications

Information overload
Large-scale computing infrastructure
Data storage at large scale

Limitations of existing approaches

Issue Parallel FS Data-intensive FS Cloud store ???

Too many
small files

× Addressed × Addressed

Centralized
metadata

Addressed × Addressed Addressed

No versioning
support

× × Addressed Addressed

No fine grain
writes

Addressed × × Addressed

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 12/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Contribution:

BlobSeer
Data Sharing at Large Scale

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 13/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Principles

BLOBs

Eliminate need to keep many small files
Provide fine-grain R/W access

Data striping

Distributes I/O workload
Enables user to configure distribution strategy

Decentralized metadata

Distributes metadata at fine granularity
Brings scalability and high avalability

Versioning is a key design principle

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 14/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Versioning as a key principle

Clients mutate BLOBs by submitting diffs

A BLOB is never overwritten: a new snapshot is generated

Only diffs are stored

Clients see whole, fully independent snapshots

Fine-grain read access to any past snapshot is possible

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 15/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Contribution: a versioning-oriented access interface

id = CREATE()

v = APPEND(id, size, buffer)

v = WRITE(id, offset, size, buffer)

(v, size) = GET RECENT(id)

READ(id, v, offset, size, buffer)

new id = CLONE(id, v)

dv = MERGE(sid, sv, soffset,
ssize, did, doffset)

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 16/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Consistency semantics

Writes: are atomic and
totally ordered

No guarantee when they
become visible to clients
Finish before becoming
visible to clients

Reads: require a version
explicitly

GET RECENT does not
guarantee latest version
Can read any version older
than GET RECENT

Read exposed writes only

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 17/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Advantages of this proposal

Access to historic data

Revert to previous snapshots

Track changes to data

Exploit data parallelism better

Avoid synchronization to achieve
better throughput

Build complex workflows

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 18/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Architecture

Data providers

Metadata providers

Provider manager

Allocation strategy

Version manager

Guarantees total
ordering and
atomicity

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 19/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

How does a read work?

1 Select a version (optionally ask
version manager for the most
recently exposed version)

2 Fetch the corresponding
metadata from the metadata
providers

3 Contact providers in parallel
and fetch the chunks into the
local buffer

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 20/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

How does a write work?

1 Get a list of providers, one for
each chunk

2 Contact providers in parallel
and write the chunks

3 Get a version number for the
update

4 Add new metadata to
consolidate the new version

5 Report the new version is ready

→ Version manager will eventually
expose it

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 21/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

How to guarantee total ordering and atomicity?

Clients ask for a version
number

Version manager assigns
version numbers

Clients write metadata
concurrently

Clients confirm completion

Version manager exposes
versions in order of assignment

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 22/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Zoom on metadata management: Motivation

Present fully independent snapshots in spite of writing only
diffs

Access performance should not degrade with increasing
number of diffs

Proposed so far: B-Trees, Shadowing

Difficult to maintain in a distributed fashion
Expensive synchronization for concurrent updates

Our goals:

Easy to manage in a distributed fashion
Efficient concurrent updates

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 23/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Contribution: Versioning over Distributed Segment Trees

Deals with distributing the metadata while avoiding expensive
management

Binary tree is associated to each BLOB snapshot

Reads descend towards leaves, writes build new trees bottom-up

Key ideas

Keep metadata
immutable

Share whole sub-trees

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 24/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Contribution: Versioning over Distributed Segment Trees

Deals with distributing the metadata while avoiding expensive
management

Binary tree is associated to each BLOB snapshot

Reads descend towards leaves, writes build new trees bottom-up

Key ideas

Keep metadata
immutable

Share whole sub-trees

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 24/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Contribution: Versioning over Distributed Segment Trees

Deals with distributing the metadata while avoiding expensive
management

Binary tree is associated to each BLOB snapshot

Reads descend towards leaves, writes build new trees bottom-up

Key ideas

Keep metadata
immutable

Share whole sub-trees

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 24/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Contribution: Versioning over Distributed Segment Trees

Deals with distributing the metadata while avoiding expensive
management

Binary tree is associated to each BLOB snapshot

Reads descend towards leaves, writes build new trees bottom-up

Key ideas

Keep metadata
immutable

Share whole sub-trees

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 24/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Metadata forward references

Solve the problem of efficient concurrent updates to the metadata

Key idea: precalculate children of lower versions instead of waiting

Example

Initial BLOB
Three concurrent writers finished writing their chunks
Black is faster but knows about blue and links to the not-yet-existing node
After red and blue finish, metadata is consistent

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 25/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Metadata forward references

Solve the problem of efficient concurrent updates to the metadata

Key idea: precalculate children of lower versions instead of waiting

Example

Initial BLOB
Three concurrent writers finished writing their chunks
Black is faster but knows about blue and links to the not-yet-existing node
After red and blue finish, metadata is consistent

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 25/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Metadata forward references

Solve the problem of efficient concurrent updates to the metadata

Key idea: precalculate children of lower versions instead of waiting

Example

Initial BLOB
Three concurrent writers finished writing their chunks
Black is faster but knows about blue and links to the not-yet-existing node
After red and blue finish, metadata is consistent

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 25/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Metadata forward references

Solve the problem of efficient concurrent updates to the metadata

Key idea: precalculate children of lower versions instead of waiting

Example

Initial BLOB
Three concurrent writers finished writing their chunks
Black is faster but knows about blue and links to the not-yet-existing node
After red and blue finish, metadata is consistent

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 25/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Design considerations

Event-driven, layered design

Callbacks instead of blocking
Asynchronous RPC for interprocess communication

Metadata providers form a DHT

Custom implementation

Plugin-able allocation strategy on provider manager

Round-robin load-balancing by default
More adaptive solutions possible

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 26/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Fault tolerance

Clients die during write

Before asking for a version: no problem
After asking for a version: delegate to metadata provider

Data and/or metadata providers die

Replication of chunks and metadata pieces
Data and metadata immutable: no sync between replicas
needed

Version manager and/or provider manager dies

Distributed state machine using leader election

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 27/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Experimental platform: Grid’5000

Experimental testbed distributed in 9
sites around France

A total of more than 5000 cores

Reservation system grants exclusive
access for experiments

x86 64 CPUs, >2 GB RAM, locally
attached disks

Interconnect: Gigabit Ethernet,
Myrinet, Infiniband

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 28/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Results: synthetic benchmarks

Data striping Metadata decentralization

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 29/ 45



Context
BlobSeer

Applications

Principles
High level description
Metadata management
Design issues
Synthetic benchmarks

Results: synthetic benchmarks (2)

Increase write pressure while reading Increase read pressure while writing

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 30/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

Applications

Storage backend for Hadoop MapReduce

Efficient VM image deployment and snapshotting on clouds

QoS enabled storage for clouds

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 31/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

MapReduce

Data-intensive oriented paradigm

Covers a wide range of
data-intensive application classes

Users stick to a well-defined model

Widely adopted: Google, Yahoo

Popular open-source
implementation: Hadoop

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 32/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

BlobSeer as a storage backend for Hadoop MapReduce

Proposal

BlobSeer replaces HDFS (default storage backend)

Design issues

Implement Hadoop API

Hierarchic namespace for BLOBs

Data prefetching

Affinity scheduling: exposing data location

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 33/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

Results: synthetic benchmarks

Single writer Concurrent readers

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 34/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

Results: Real MapReduce applications

Write intensive Read intensive

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 35/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

In short

Improvement of 11%-30% over HDFS for real MapReduce
applications

Potential to leverage versioning in Hadoop

Further improve performance
New features

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 36/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

Virtual machine image storage for IaaS clouds

On IaaS clouds users rent resources as VMs

VM image customized with user application
Two patterns:

Multi-deployment: instantiate many VMs from the same image
Multi-snapshotting: save state of VMs into independent
images

State-of-art: full pre-propagation, then copy images back to
repository

Our goal: reduce cost (execution time, storage space, network
traffic)

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 37/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

Proposal

Store image in a striped fashion

Leverage BlobSeer to store each image as a BLOB

Mirror image contents locally

Lazy scheme: only read from BLOB when needed

Keep changes to image local

Only the necessary parts are accessed

Consolidate local changes into an independent image

CLONE BLOB, then WRITE local changes to BLOB

Provides illusion of independent images

Only differences are stored

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 38/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

Results: scalability of multi-deployment under concurrency

VM boot: runtime speedup vs.
pre-propagation

VM boot: total network traffic vs.
pre-propagation

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 39/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

Results: performance of multi-snapshotting

Avg. time to take snapshots Total network traffic (storage space)

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 40/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

In short

Large speedup and network traffic savings over
pre-propagation for multi-deployment

Efficient multi-snapshotting

Portable approach: does not depend on hypervisor to manage
diffs

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 41/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

Quality-of-service enabled storage for cloud applications

Storage for data-intensive applications deployed on IaaS clouds

QoS impacted by several factors

Multiple customers share the same storage service
Hardware components prone to failures
Application access pattern

We need:

High aggregated throughput under concurrency
Stable throughput for individual data accesses

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 42/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

Proposal: QoS improvement methodology

Methodology

1 Monitor storage service

2 Collect app feedback

3 Identify + classify behavior
patterns using GloBeM

4 Prevent undesired patterns

Input: MapReduce access patterns + faults

Applied methodology to find bottlenecks

Output: Improved BlobSeer allocation strategy

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 43/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

Results: improvement of throughput stability

Clients separated from providers Clients co-deployed with providers

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 44/ 45



Context
BlobSeer

Applications

Storage backend for Hadoop MapReduce
Virtual machine image storage for IaaS clouds
Quality-of-service enabled storage for cloud applications

In short

General methodology to improve QoS for cloud storage

Concretely:

Reduction in standard deviation for read throughput of up to
25%
Promising results for cloud providers to improve SLA for the
same price

Bogdan Nicolae BlobSeer: Efficient data storage on distributed systems 45/ 45


	Context
	Information overload
	Large-scale computing infrastructure
	Data storage at large scale

	BlobSeer
	Principles
	High level description
	Metadata management
	Design issues
	Synthetic benchmarks

	Applications
	Storage backend for Hadoop MapReduce
	Virtual machine image storage for IaaS clouds
	Quality-of-service enabled storage for cloud applications


